New sky surveys in millimeter wavelengths

Also available in: Español (Spanish) Euskara (Basque)

Translation of the unrolled copy of my astrothread from 05/31/2024 on Twitter/X

How many galaxies are there? How many do we detect in an integrated image of a few hours? What brightness, distance, mass will they have? How many stars will be being born in them? This technical article (in press) tells you about it https://arxiv.org/abs/2403.15650  and the explanation for the general public below.

Imagen NIRCam @NASAWebb del cúmulo SMACS 0723, en la que se aprecian miles de galaxias. Créditos imagen: @STSCI / @NASA

NIRCam image from the James Webb Space Telescope of the cluster SMACS 0723, in which thousands of galaxies can be seen. Image credits: STScI / NASA

In a computer we can predict how the mass of galaxies changes over time, from very early times to the present day. We use the Bolshoi-Planck simulation of dark matter to predict which galaxies we will find in 5.3 square degrees of the sky.

 

Representación de la porción de Universo visible en 5.3 grados cuadrados (unas 26 lunas llenas), en el que se aprecia la densidad de halos de materia oscura. En una sección inferior se representa una pequeña porción de la pirámide, con los halos marcados por círculos de radio proporcional a su masa. Llega hasta corrimiento al rojo 8, a unos 30,000 millones de años luz de distancia, de tal manera que la luz de las galaxias que habitan los halos a mayor distancia ha viajado el 95% de la vida del Universo en llegar hasta un observador que simule a la Vía Láctea hoy en día (en el ápice de la pirámide). Créditos: Araceli Nava Moreno

Representation of the portion of the visible Universe in 5.3 square degrees (about 26 full moons, at the base of the triangle perpendicular to the plane represented). In the image you can see a triangle that represents the density of dark matter haloes at different distances. It reaches redshift 8, about 30,000 million light years away, in such a way that the light from the galaxies that inhabit the haloes at greater distances has traveled 95% of the life of the Universe to reach an observer who simulates to the Milky Way today (at the apex of the triangle). In a lower section a small portion of the pyramid is represented, with the halos marked by circles of radius proportional to their mass.  Credits: Araceli Nava Moreno

We can associate the total mass of galaxies with their mass in stars, their rate of star formation, their dimming and emission in millimeter waves to predict which ones we could detect with telescopes such as the Alfonso Serrano Large Millimeter Telescope in Puebla, and its new imaging camera, TolTEC.

 

Gran Telescopio Milimétrico Alfonso Serrano en la cima del volcán Tliltépetl, Edo. de Puebla. Créditos imagen: @gtmlmt_oficial
Large Alfonso Serrano Millimeter Telescope on the top of the Tliltépetl volcano, State of Puebla. Image credits: LMT

The properties of the simulated brightest galaxies very well reproduce the distributions of brightness, distance and rates of new star formation measured so far in sky surveys carried out with other millimeter telescopes.

Diagrama técnico de Nava-Moreno et al. 2024, MNRAS en prensa. Distribución de densidad (comóvil) de galaxias por unidad logarítmica de luminosidad infrarroja (en luminosidades solares) en función de la luminosidad infrarroja para 4 muestras, desde las galaxias más cercanas (z<1.5) a las más lejanas (z>3.5), comparada con la distribución de densidad de galaxias medidas en diferentes censos del cielo existentes.
Technical diagram from Nava-Moreno et al. 2024, MNRAS, in press. Density distribution (comovile) of galaxies per logarithmic unit of infrared luminosity (in solar luminosities) as a function of infrared luminosity for 4 samples, from the closest galaxies (z<1.5) to the farthest (z>3.5). The black line from our calculations is compared to the density distribution of galaxies measured in different existing sky surveys (colored dots).

For the deeper observations we will make with TolTEC at wavelengths of 1.1, 1.4 and 2.0mm, we predict that the deepest field of 0.8 square degrees (4 full moons) will have about 28,000 galaxies detectable up to distances of 30 billion light years.

Simulación de una observación del cielo visto por TolTEC a 1.1mm en un área de 0.3 grados cuadrados, correspondiente a un área equivalente de luna y media. Los efectos atmosféricos e instrumentales están considerados en esta simulación. Los puntos brillantes corresponden a galaxias del catálogo de Nava-Moreno y colaboradores que se podrían detectar con TolTEC. Crédito: tesis de maestría de Daniela Espitia, INAOE 2023.

Simulation of an observation of the sky seen by TolTEC at 1.1mm in an area of ​​0.3 square degrees, corresponding to an area equivalent to one and a half moons. Atmospheric and instrumental effects are considered in this simulation. The bright spots correspond to galaxies from the Nava-Moreno and collaborators catalog that could be detected with TolTEC. Credit: master’s thesis by Daniela Espitia, INAOE 2023.

The simulation allows us to deduce that there will be galaxies that appear on top of each other in the image and how to correct this effect that makes us overestimate their brightness. Sometimes we can attribute 90% of the detected brightness to one galaxy, when there are actually many of them together.

 

Igual que los niños alrededor de una pelota, las galaxias se pueden agrupar alrededor de los grandes centros de masa. Créditos de fotografía @freepik Company.
Like children around a ball, galaxies can cluster around large centers of mass. Photo credits Freepik Company.

The article is headed by INAOE  student Araceli Nava Moreno. It is also signed by E. Peralta, INAOE student, A. Montaña, A. Rodríguez-Puebla, V. Ávila-Reese and myself, researchers from INAOE and IA-UNAM.

Leave a comment

Your email address will not be published. Required fields are marked *